
Efficient Privacy-Preservation Multi-factor
Ranking with Approximate Search over

Encrypted Big Cloud Data

Jing He1, Yiming Wu2, Guangli Xiang3, Zhendong Wu4, and Shouling Ji2(B)

1 Department of Computer Science, Kennesaw State University,
30060 Marietta, GA, Georgia

jhe4@kennesaw.edu
2 School of Computer Science and Technology, Zhejiang University,

Hanzhou, China
yiming96510@163.com, sji@zju.edu.cn

3 School of Computer Science and Technology, Wuhan University of Technology,
Wuhan, China

glxiang@whut.edu.cn
4 School of Cyberspace, Hangzhou Dianzi University, Hanzhou, China

wzd@hdu.edu.cn

Abstract. Encrypting data before outsourcing data has become a chal-
lenge in using traditional search algorithms. Many techniques have been
proposed to cater the needs. However, as cloud service has a pay-as-you-
go basis, these techniques are inefficiency. In this paper we attack the
challenging problem by proposing an approximate multi keyword search
with multi factor ranking over encrypted cloud data. Moreover, we estab-
lish strict privacy requirements and prove that the proposed scheme is
secure in terms of privacy. To the best of our knowledge, we are the first
who propose approximate matching technique on semantic search. Fur-
thermore, to improve search efficiency, we consider multi-factor ranking
technique to rank a query for documents. Through comprehensive exper-
imental analysis combined with real world data, our proposed technique
shows more efficiency and can retrieve more accurate results and mean-
while improve privacy by introducing randomness in query data.

1 Introduction

In order to provide on-demand access to resources, many companies are migrat-
ing services to cloud. However, there are huge amount of data in many places
because the users can use them in remote location [1]. Researches have proposed
some techniques on encrypting and outsourcing data into the cloud [2]. Given the
expensive bandwidth cost, it’s impossible to download and decrypt all the data
locally, while we can search on encrypted data firstly and then download exact
information. However, meeting requirements of performance such as accuracy,
privacy and efficiency through this method can be quite challenging.

Particularly, we summarize our contribution of the paper as follows.
c© Springer International Publishing AG 2017
S. Wen et al. (Eds.): CSS 2017, LNCS 10581, pp. 452–459, 2017.
https://doi.org/10.1007/978-3-319-69471-9_33

Privacy-Preservation Multi-factor Ranking with Approximate Search 453

– Using Stemming Algorithm for approximate matching to reduce search time
complexity;

– Considering multiple factors to calculate approximating scores for ranking
results more accurately;

– Efficient index construction by eliminating unimportant words to achieve
optimized storage;

– Improving privacy-preservation by including dynamic dummy fields in the
index and the query;

– Comparing experimental results with the state-of-the-art technique [3] in
terms of searching time, accuracy, and privacy-preservation.

2 Problem Definition

2.1 System Model

The system model is illustrated in Fig. 1. In this paper, we use vector space model
to model the documents stored in cloud server in which each data is represented
as data vector when we refer data and document vectors. We explain the concept
of multi keyword search in high dimensional space that has a particular data in
dimensional matrix can be termed as data vector. In the context of multi keyword
search algorithm, we model the data as dimensional matrix to perform ranking
and retrieving ranking score for a particular query. Remember that we don’t
store index in matrix form but use binary tree index [3] technique to create
index.

Fig. 1. System Architecture for search over encrypted data in cloud computing

2.2 Notations

In this section we summarize the notations used in the paper. We follow the
same notations in entire paper:

– M : The plain text document collection denoted as set of n data documents
M:{m1,m2....,mn}. Where n is the number of files in the document collection.

454 J. He et al.

– E : Encrypted documents stored in cloud server that can be denoted as E:
{e1, e2,en}.

– W : The distinct keywords extracted from document collection M, denoted as
W = {w1, w2, ..., wn}.

– I : Searchable Encrypted index associated with E denoted as E:{i1, i2, i3.in},
where each index ii is built for each document mi in document collection.

– W : Represents keyword set in a search query that can also be considered as
subset of W and denoted by W :{wj1, wj2, wj3......wji}, where j represents
the jth keyword in the query, and i=1,2,3,n represents the ith letter in jth

keyword.
– TW : The trapdoor generated for W.
– MidW : The ranked id list of all documents for W , where the subscript repre-

sents the id of the document retrieved for W.
– K : Initial Keyword set created based on stem condition that can be repre-

sented as K : {k1, k2, km} where m is the number of keywords in a the set.
– Sk: Secrete key generated by data owner used to encrypt, decrypt and to

perform secure hash operations.
– T1, T2: They are the matrices to create secrete key.
– V ,Q : Represents the data vector and query vector that can be multiplied to

calculate to get the ranking score while searching.
– Pscore: Score added to the term frequency rule by considering multiple factors.

3 Approximate Matching and Multi-factor Based
Ranking Scheme

3.1 Approximate Matching

Trying to measure the similar between the created keywords with regard to the
original query keyword, we propose Approximation Score to rank them. To be
specific, the Approximate Score of ki is denoted by APP(ki), can be formulate
as follows:

APP (ki) = Log10((
Lij

Qj
)) ∗ ((

Uij

Qj
)) (1)

Algorithm 1. Create Stem Words
1: Procedure createstem(wj , m, n) //wjrepresents single keyword in the given mul-

tiple keyword query;
2: for j = 0 to length of wj do
3: if j < m then
4: p

′
= +wji;

5: else if j < (length(wj) − n) then

6: s
′
= +wji;

7: end if
8: end for

Privacy-Preservation Multi-factor Ranking with Approximate Search 455

The pseudo-codes of the whole process are summarized as follows. The stem
words are created based on pre-defined conditions as shown in Algorithm1. And
then basic keyword sets are created on the basis of pre-created stem words (shown
in Algorithm 2). Finally, the final keyword set is constructed by retrieving top l
keywords in the basic keyword set (shown in Algorithm 3).

Algorithm 2. Basic Keyword Set Creation

1: Procedure keyword set traverse(I, p
′
, S

′
);

2: if wji==nil then
3: return -1;
4: else
5: return 1 + Math.max(height(I.root.left),height(I.root.right));
6: //compute height of tree;
7: end if
8: if I.root == nil then
9: return

10: end if
11: for i = 0 to height of tree do
12: traverse(I.root.left, p

′
, S

′
);

13: end for
14: if I.root.left == p

′
then

15: save in Ki;
16: else if I.root.left == S

′
then

17: traverse(I.root.right, p
′
, S

′
);

18: end if

3.2 Ranking Similarity Measure

We consider two additional factors in calculating ranking score to further improve
the precision. One the position of the keyword with respective to other docu-
ments and the other is the distance between the keywords in a sentence. The
multi-factor based ranking score denoted by Score(mi,W) is formulated in Eq. 2.

Score(mi,W) =
1

|mi|
∑

Wj∈W

(1 + ln(fmi,wj
)) ∗ ln(1 +

|M |
fwj

) + Pscore (2)

Pscore is the padding score, which can be calculated by Eq. 3.

Pscore = (
fmi,wj

|mi|)(1 − positon(wj)
|mi|) (3)

4 System Framework and Efficient Search Mechanism

In this section we describe the basic framework of how our system works on
encrypted data. The overview of the system framework is summarized in Fig. 2.

456 J. He et al.

Algorithm 3. Final Keyword Set Creation
1: Procedure Set buildfinalset(K,l).//l represents the top keyword that needs to be

searched;
2: if length of K <0 then
3: Generate trapdoor on K;
4: else
5: for i =0 to length of K do
6: for j = 0 to j < i do
7: if letter of i at j is matched with query of letter j then
8: count = count+1;
9: else if letter matched with position then

10: temp = temp+1;
11: Compute approximate score for each ki;
12: end if
13: end for
14: end for
15: SORT(K); //keyword collection is sorted based on the approximate score;
16: end if
17: Return Set;

4.1 Random Dummy Field Insertion Mechanism

Trapdoor calculates the dummy fields with Eq. 4, and matches the keyword with
the ranking score.

Ii ∗ TW = TT
1 ∗ −→

Vl
′
, TT

2 ∗ −→
Vl

′′ ∗ T−1−→Ql
′
, T−1

2 ∗ −→
Ql

′

= (
−→
Vl ∗ −→

Ql) ∗ (
−→
Vl

′′ ∗ −→
Ql

′′
) ⇒ Vi ∗ Qi

= Score(mi,W) +
∑

µ(U) + t (4)

4.2 Security Analysis

To provide privacy, dummy values are inserted by extending the dimension of
data vector of trapdoor and the query. These random values can be inserted
dynamically in the extended dimensions. Each time the trapdoor is generated
dimension extensions can be different and random dummy fields would be dif-
ferent. Introducing dummy fields can produce different equations for each query.
However, performance might could be compromised when introducing dummy
fields in the extended dimension and differentiating from actual data vector.
However, improving privacy is a tradeoff to loose performance in terms of com-
putational speed and accuracy.

Privacy-Preservation Multi-factor Ranking with Approximate Search 457

Fig. 2. Approximate searching process.

5 Performance Analysis

5.1 Simulation Settings

We build our own simulator through J2EE to simulate the cloud scenario. We
used Enron dataset [4] that contains email information taken from 60000 users
and randomly select subsets to form our testing dataset. Experiments are done
for 700 files in a dataset and having 800 keywords in each file. To make smooth
output, we averaged the values for every 100 instances. Three different schemes
are implemented: (1) Our proposed scheme, noted by Approximation Search. (2)
Privacy-Preserving Scheme in Known Ciphertext Model proposed in [5], noted by
MRSE1. (3) Privacy-Preserving Scheme in Known Background Model proposed
in [5], noted by MRSE2. We compare them in terms of the index creation time,
trapdoor generation time, the query execution time.

5.2 Simulation Results

Index Construction Time. Index is created by extracting words from the
document and each letter in the word forms a node. The index construction
time includes the time to scan documents and create nodes in the index tree.
Figure 3(a) shows the results of index construction time for all there algorithms.

458 J. He et al.

Fig. 3. Simulation results

Trapdoor Generation Time. Generating trapdoor requires the query and a
secrete key. Figure 3(b) illustrates the time cost for trapdoor generation when a
user gives a query to the server.

Query Generation and Execution Time. Query execution in server consists
of creating and matching the hash values to differentiate the randomness from
actual data, and ranking the order of the document. Figure 3(c) shows the results
of query execution time with regard to the number of keywords in a query.
Figure 3(d) shows the results of query execution time with regard to the number
of files. Figure 3(e) summarizes the accuracy comparison results among three
schemes.

6 Conclusion

In this paper we first introduce an approximate matching that can work on
encrypted cloud data to improve searching efficiency. Subsequently, a multi-
factor based ranking scoring technique is proposed to improve the accuracy of
the searching results. Finally, to improve preserve privacy, a dynamic random

Privacy-Preservation Multi-factor Ranking with Approximate Search 459

dummy value insertion scheme is proposed, so that it can withstand scale analysis
attacks.

Acknowledgement. This work was partly supported by the Kennesaw State Uni-
versity College of Science and Mathematics the interdisciplinary Research Opportu-
nities Program (IDROP), and the Office of the Vice President for Research (OVPR)
Pilot/Seed Grant.

This was also partly supported by NSFC under No. 61772466, the Provincial Key
Research and Development Program of Zhejiang, China under No. 2017C01055, the Fun-
damental Research Funds for the Central Universities, the Alibaba-Zhejiang Univer-
sity Joint Research Institute for Frontier Technologies (A.Z.F.T.) under Program No.
XT622017000118, the CCF-Tencent Open Research Fund under No. AGR20160109, the
National Key Research and Development Program of China (2016YFB0800201), and the
Natural Science Fundation of Zhejiang Province (LY16F020016).

References

1. Chapman, C., Emmerich, W., Clayman, S.: Software architecture definition for on-
demand cloud provisioning. Cluster Comput. 15(2), 79–100 (2012)

2. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: 2011 31st International Conference on Distributed
Computing Systems (ICDCS), pp. 383–392. IEEE (2011)

3. Ji, S., Li, W., He, J., Srivatsa, M., Beyah, R.: Poster: Optimization based data de-
anonymization2014. In: Poster Presented at the 35th IEEE Symposium on Security
and Privacy, May, vol. 18, p. 21 (2014)

4. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable
storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232
(2012)

5. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2014)

	Efficient Privacy-Preservation Multi-factor Ranking with Approximate Search over Encrypted Big Cloud Data
	1 Introduction
	2 Problem Definition
	2.1 System Model
	2.2 Notations

	3 Approximate Matching and Multi-factor Based Ranking Scheme
	3.1 Approximate Matching
	3.2 Ranking Similarity Measure

	4 System Framework and Efficient Search Mechanism
	4.1 Random Dummy Field Insertion Mechanism
	4.2 Security Analysis

	5 Performance Analysis
	5.1 Simulation Settings
	5.2 Simulation Results

	6 Conclusion
	References

